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CHAPTER I 

INTRODUCTION 

A moment method (MM) [2] solution is applied to two different antennas in 

the presence of a grounded dielectric substrate. A grounded dielectric substrate is 

a dielectric substrate of thickness T on top of an infinite ground plane. The first 

antenna is a microstrip antenna consisting of a perfectly conducting rectangular 

patch lying horizontally on top of the dielectric substrate. Figure 1 in Chapter I1 

shows the geometry of this antenna. The problems of interest for the microstrip 

antenna are plane wave scattering and the input impedance when the antenna is 

excited by a filament of uniform current. The antenna can be loaded by a lumped 

impedance in a filament of uniform current. The other antenna is a perfectly con- 

ducting vertical wire, or monopole antenna, extending from the ground plane, into 

or through the dielectric substrate. Figure 12 in Chapter I11 shows the geometry 

of this antenna. The problems of interest are the self impedance of a monopole 

and the mutual impedance between two monopoles. 

The MM solution for the perfectly conducting rectangular patch is begun by 

considering the patch to be excited by an arbitrary source with currents ( J i , M i )  

located in either the dielectric substrate or the free space region above it. The 

surface equivalence theorem is used to replace the patch with an unknown surface 

current, Js. The boundary condition t-hat the total tangential electric field on the 

patch surface must be zero is applied to yield the integral equation for the unknown 
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surface current Js. The unknown surface current Js is expanded into a sum of 

N (known) entire domain expansion functions. The MM solution determines the 

N coefficients in this expansion. For plane wave scattering, the patch is excited 

by a uniform plane wave with an incident angle of (e*,&). The scattered field 

is tlie sum of the field of each basis function multiplied by the strength of that 

basis function. To find the input impedance, the patch is excited by a vertical 

filament of uniform current extending from the ground plane to the patch. The 

input impedance is determined from the ratio of the voltage at the feed point and 

the current into the feed point. The effect of the load is determined from modeling 

the microstrip antenna as a two port device, where the excitation represents port 

1 and the load represents port 2. The current through the load is determined from 

the unloaded case. The load current acts as a source and is added to the unloaded 

excitation to obtain the loaded result. 

Many papers have been written on the rectangular patch microstrip antenna. 

Early work by Munson (31 and Derneryd [4] modeled tlie microstrip antenna as a 

transmission line that radiates from the open ends. This model does not include 

higher order niodes and thus is valid only near the first resonance of the patch. 

Lo et al. [6] and Richards et al. [7] used a cavity model. This model assumes 

an admittance around tlie open edges of the patch to form a cavity. Higher or- 

der modes are supported by a cavity model. Agrawal and Bailey [5] performed 

a wire grid analysis of the microstrip patch. This was one of first solutions that 

attempted to model the nlicrostrip patch by tlie currents on the patch. Newman 

and Tulyathan [8] employed a MM solution similar to that for plates. Bailey and 

Deshpande [9,10] and Pozar [15] used the Greens function for the grounded dielec- 

tric substrate in their MM solutions and used entire domain mode functions. Poear 

compared the numerical efficiency of the entire domain modes and the piecewise 
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sinusoidal modes when solving for the impedance inat-rix. Most, of the work up 

to this point was primarily concerned with the behavior of the microstrip patch 

in a narrow band around first resonance. Newman and Forrai [14] examined the 

wide band scattering of the microstrip patch. An impedance matrix interpolation 

scheme was employed to minimize the number of times the MM impedance matrix 

had to be computed. This report will examine the wide band scattering and the 

wide band input impedance of a loaded rectangular patch microstrip antenna. It, 

will be shown that when the antenna is loaded by a vertical filament of uniform 

current that contains a lumped impedance, the results closely approximate the 

behavior of a microstrip antenna loaded through a coaxial port. 

The MM solution for the perfectly conducting vertical thin wire is begun by 

considering the wire to be excited by an arbitrary source with currents (J i ,Mi) .  

The wire is replaced by a unknown surface current Js. Thin wire approximations 

are applied to this surface current. It is modeled as a vertical or ri directed filament, 

of current [17]. This current is approximated by a sum of N (known) basis 

functions. The MM solution determines the unknown coefficients in this expansion 

for excitation by the so called delta gap generator [19]. The input impedance is 

determined from the ratio of the excitation voltage and the current on the wire at 

the point of excitation. The mutual impedance is determined from the ratio of the 

excitation voltage on one wire to the current on the other wire. 

Collin and Zucker [18] analyzed a vertical electric current element inside a two 

layer earth. They modeled t,he earth as flat and therefore their a.nalysis is similar to 

that of a vertical current element inside of a grounded dielectric substrate. Pinhas 

and Shtrikman [22] analyzed vertical currents in the dielectric region of a grounded 

dielectric substrate by modeling the vertical current as a horizontal surface current. 

One of their primary interests with this analysis was modeling the vertical current 

3 



for a coaxially fed microstrip antenna. Chi and Alex6poulos [21] performed an 

analysis of a vertical wire in a grounded dielectric substrate which is similar to the 

one presented in this report. Their excitation was a iiiagnetic frill current in the 

aperture of the coaxial feed on the ground plane. This report will use the siiiipler 

so called delta gap generator for the excitation and compare the results to theirs. 

It is shown that the two different excitations produce nearly identical numerical 

results. 

Chapter I1 describes the derivation of the integral equation and the MM solu- 

tion for the nlicrostrip antenna. Chapter 111 describes the same derivations for the 

vertical monopole antenna in the grounded dielectric substrate. Chapter IV con- 

tains the results for plane wave scattering and input impedance of an unloaded and 

loaded microstrip antenna. Data from both a MM computation and ineasureiiient 

is presented. Chapter IV also shows the mutual impedance between two vertical 

monopoles in a grounded dielectric substrate. Chapter V summarizes this report. 
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CHAPTER I1 

THE INTEGRAL EQUATION AND MOMENT METHOD 

SOLUTION FOR THE RECTANGULAR PATCH MICROSTRIP 

ANTENNA 

2.1 Introduction 

This chapter will describe the integral equation and the moment method [2] 

(MM) solution to the problem of plane wave scattering and input impedance of 

a rectangular patch microstrip antenna on an infinite microstrip slab. The basic 

geometry of this structure is shown in Figure 1. The antenna can be excited by 

either a filament of uniform current extending vertically through the dielectric 

substrate or by an incident plane wave. A load will be modeled by an uniform 

vertical current with fixed impedance. 

The solution is begun by using the equivalence theorem to replace the perfectly 

conducting patch by an unknown surface current Js. Then, the integral equation 

for Js is obtained by requiring that the total electric field tangent to the patch 

surface be equal to zero. Finally, the integral equation is solved using the MM. 

2.2 Derivation of the Integral Equation 

This section describes the use of the surface equivalence theorem to derive 

the integral equation for the problem of radiation or scattering by a perfectly 

conducting rectangular patch on an infinite dielectric substrate on top of an infinite 

5 



A 

2w 

* 2H 3 

V 

+ X  

a) Top view of a perfectly conducting rectangular patch on top of a infinite dielec- 

tric slab. 

Region I 

..... ..... ..... ..... ..... . .-. . ..... ..... 

... ... ... ... ... 

.... .............. .;~
E=- T 

13) Side view 

substrate on 

of a perfectly conducting rectangular patch on an infinite 

a perfectly conducting ground plane. It, is excited by an 

source with electric and magnetic currents ( J ~ , M ~ ) .  

Figure 1: The basic geometry of a. microstrip patch antenna. 
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perfectly conducting ground plane. The geometry of a dielectric substrate on top of 

a perfect conductor will be referred to as a grounded dielectric substrate. Figure 1 

shows a perfectly conducting rectangular patch of length 2H in the ji. direction 

and width 2W in the 9 direction on a grounded dielectric substrate. The region 

above the dielectric substrate, referred to as Region I, is free space. The region 

inside the dielectric substrate, referred to as Region 11, has a permittivity of €2, 

permeability of PO, and thickness 7'. The origin of the coordinate system is placed 

at the center of the rectangular patch. The normal to the rectangular patch surface 

is the % direction. An arbitrary source, which can be located in either Region I or 

Region 11, has electric and magnetic currents (Ji,Mi) that illuminate the patch 

with incident fields (Ei,Hi). Note that (Ei, H i )  are the fields of (Ji,Mi) in the 

presence of the grounded dielectric substrate without the rectangular patch. Let 

(E,H) denote the electric and magnetic fields produced by (Ji,Mi) in the presence 

of the grounded dielectric substrate with the rectangular patch. 

Since the patch is a perfect conductor, the equivalent current on the rectan- 

gular patch surface will be 

Js = P x H. (2.1) 

Since the patch is infinitesimally thin, the surface current Js actually represents 

the vector sum of the surface current on the top surface and of the surface current 

on the bottom surface of the patch [12]. The equivalent problem is illustrated in 

Figure 2. The total electric and magnetic fields in either region are 

E = E ~ + E ~  (2.2) 

where (E s s  ,H ) are the fields radiated by the equivalent current Js in the presence 

of the grounded dielectric substrate. 
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On the surface of the patch, the tangential components of the total electric 

field must equal zero. Then, from Equation (2.2) 

( E i  + E') x B = 0. 

This can also be written as 

- Etan S = Eia,,. 

This is the integral equation for Js since 

ES = J-, Jp ,  G2 Js de' dy' 

where e2 = e2(x' ,y '  I z,y,z) is the dyadic Green's function for the grounded 

dielectric substrate. ES is  a fuiiction of (e, y, z), while Js is a function of (e', y'). 

The dyadic Green's function e2 is used only to show the integral form of an electric 

field and will not be used in the analysis. 

2.3 The General Moment Method Solution 

This section will use the integral equation developed in the preceding section to 

develop a general MM solution for the geometry of Figure 1. The unknown surface 

current in the integral equation will be replaced by a sum of N known vector 

expansion functions of unknown strengths. By taking an inner product between 

Equation (2.5) and a set of N vector weighting functions, a matrix equation is 

formed. A Galerkin solution will be used and expressions for the matrix elements 

will be given. 

To begin the solution for the unknown equivalent surface current, Js is rep- 

resented as a sum of N known vector expansion functions 

N 
Js = InJ," 

n= 1 

9 



where J: are the expansion functions and In represents the unknown strength of 

each expansion function. Let E: be the field radiated by the expansion function 

J: in the presence of the grounded dielectric substrate. Then Equation (2.5) can 

be written as 

By taking the inner product of Equation (2.8) with a set of N known vector 

weighting functions defined on the surface of the patch, Equation (2.8) reduces to 

a N x N system of simultaneous linear equations. These equations can be written 

compactly in matrix form as 

[Zl[II = [VI 

where [Z] is an N x N impedance matrix, [ I ]  is a N element current column array 

containing the unknown coefficients In of the expansion of Js and [VI is a N 

element voltage vector column array. Applying a Galerkin solution, which defines 

the vector weighting functions to be the same as the vector expansion functions, 

a typical element of [Z] is 

Z m n = -  Jw -W J" - H  E;-JS,dxdp 

and a typical element of [VI is 

Vm = Jw J" E i .  J$dx dy. 
-W - H  

(2.10) 

(2.11) 

By applying reciprocity to Equation (2.11), the elements of the voltage vector can 

be expressed in terms of the electric field of J S  in the presence of the grounded 

dielectric substrate. The reciprocal expression is 

V - E;S,.Jidv 
m - J  

10 

(2.12) 



where the integral is over the volume of the impressed current and E% is the 

electric field of JZ. Now both the impedance matrix elements and the voltage 

vector elements are expressed in terms of the electric field of the expansion and 

weighting functions. 

Note that in the preceding equations, the tan subscripts that appeared in 

Equation (2.8), from which the above were baaed, have been dropped. This can 

be done since the vector weighting functions have direction tangential to the patch 

surface. 

2.4 Evaluation of the Impedance Matrix 

In this section, exact integral expressions will be developed for the imped- 

ance matrix elements using the general expression developed in the preceding sec- 

tion. The expansion functions representing the unknown surface current will be 

restricted to having either Et or 9 vector direction. Figure 3 shows an expansion 

function, J:, on the interface of Region I and Region II. The electric field for 

J: in the presence of the grounded dielectric substrate will be developed using the 

plane wave expansion method [13]. Note that this electric field is used for evaluat- 

ing both Equation (2.10) and Equation (2.12). Equation (2.10) will be evaluated 

to obtain the expressions for the impedance matrix elements. 

Since the surface current exists on the interface of Region I and Region 11, 

both regions can be considered source free. The fields in each region can be con- 

structed from two scalar functions [l]. These scalar functions must satisfy the 

scalar wave equation. For Region I, 
r 1 

(2.13) 
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z=- T 

Figure 3: The MM expansion function, JZ, at the dielectric interface. 

and for Region I I ,  

where, 

(2.14) 

"0 = u r n  (2.15) 

K2 = W r n .  (2.16) 

9 m  generates fields with a magnetic field tangent to the planar interface (TM) 

and * e  generates fields with an electric field tangent to the planar interface (TE). 

The E and H fields of either region can be defined from the 9 m ,  * e ,  E, and p of 

the appropriate region using 

12 

(2.17) 

(2.18) 



Using the plane wave expansion method [13], the scalar wave functions can 

be defined by their spectral functions. The equations to transform the spectral 

functions to the scalar wave functions are, in Region I, 

where 

K z l  = J- Re(KZ1)> 0, Im(Kzl)< O (2.20) 

and in Region 11, 

where 

The conditions already satisfied are: the boundary condition on the ground 

plane (i x EII = 0) in Equation (2.21), the radiation condition as r -, 00 in 

both Equation (2.19) and Equation (2.21), and the integrals in Equation (2.19) 

converge as z -, 00. The following boundary conditions at the dielectric interface, 

z = 0, still need to be satisfied 

1 x (EII - EI) = 0 (2.23) 

i x (HII - HI) = J,. S (2.24) 

JZ is assumed to be Fourier transformable and expressed in 2 and 9 compo- 

nents. The Fourier transform pair is 

13 



(2.26) 

where jLx and @, are the transforms of Jnz and Jny  respectively. 

By substituting Equations (2.19) - (2.22) into Equations (2.17) - (2.18), the 

integral expressions for EI, HI, Elf, and HII are obtained. Applying the boundary 

conditions of Equations (2.23) - (2.24), with Equation (2.25) substituted into 

Equation (2.24), solves for @m~,!I!el ,@ml~,  and in terms of jnx and jny. 

From this result, the total electric and magnetic fields of Region I and Region II 

[13] can be written in terms of Jnx and.jny using Equations (2.17) - (2.18). 

The tangential electric field components at the patch surface for a ji directed 

surface current is 

(2.27) 

and for a 5 directed surface current 

where 

(2.29) 

(2.30) 

(2.31) 

DE = nz2 cos nz2T + p Z 1  sin nz2T (2.32) 

DM = € 2 1 ~ ~ 1  cos nZ2T + 3c0nz2 sin nZ2T. (2.33) 
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The elements in [Z ]  are obtained by inserting Equations (2.27) and (2.28) 

into Equation (2.10) [13]. If mode n and mode m are 2 polarized, the mutual 

impedance is 

If mode n is ji: polarized and mode m is 9 polarized, the mutual impedance is 

If mode n is 9 polarized and mode m is 2 polarized, the mutual impedance is 

(2.36) 

If mode n and mode m are 9 polarized, the mutual impedance is 

where, for example, J’Zx is the Fourier transform of Jnx (see Equations (2.25) 

and (2.26)) and 

(2.38) 

Equation (2.39) shows the general form of an element of [Z ]  and a trans- 

formation of the integral from ( t c x ,  ny) coordinates to ( tc, a) coordinates. The 

transformation shown converts two integrals with infinite bounds to one integral 

with finite bounds and another integral with one infinite bound. This simplifies the 

application of the [Z] element expressions since they are integrated numerically. 

where, 

u x  = K. cos a 

tcy = IC sin a. 

15 
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2.5 Evaluation of the Voltage Vector 

This section will obtain the general equations of the voltage vector of Equa- 

tion (2.11) for an incident uniform plane wave in Region I and for a vertical 

filament of uniform current in Region II. 

2.5.1 Voltage Vector for an Incident Plane Wave in Region I 

This subsection will evaluate Equation (2.11) for the case of a uniform plane 

wave. Figure 4 shows the side view of a plane w w e  incident on a nlicrostrip patch. 

A nonphysical impressed current that radiates a uniform plane wave in free space 

will be defined so that the voltage vector elements can be written in terms of 

the far zone electric field of a weighting mode in the presence of the grounded 

dielectric substrate. Finally, the far zone electric field of the weighting mode will 

be evaluated asymptotically so that the voltage vector elements can be computed 

analytically. 

The electric field of a uniform incident plane wave in free space can be written 

as 

EO- t - E 0 p r  (2.42) 

where 

R = 21~0 sin 8 cos 4 i- Q K ~  sin 8 sin 4 + BKO cos 4 (2.43) 

r = ftrsin@cos4+9rsin@sinq5+ &TCOS+ (2.44) 

with 8, 4 defining the spherical angle of incidence. An infinitesimal dipole source in 

free space with current of amplitude &Eo will produce the plane wave described 

by Equation (2.42). Note that this source is physically unrealizable since the 

amplitude of the source is proportional to the distance T. Since an impressed 

current for a uniform plane wave in free space has been defined and the electric 

16 
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Figure 4: Plane wave incidence on a microstrip patch. 

field of JZ in the presence of the grounded dielectric substrate was developed in 

the evaluation of the impedance matrix elements, Equation (2.12) can be used to 

express the elements of the voltage vector for a uniform plane wave in free space 

incident on the microstrip patch. Defining the impressed current to  be in the far 

zone of the microstrip patch, let the far zone field of JZ be em. Then, evaluating 

Equation (2.12), the voltage vector elements are written as 

(2.45) 

Using the method of stationary phase [13], the far zone electric field of mode 

m can be evaluated asymptotically. With this evaluation, e ,  can be written as 

e ,  = 3K.O {J [cos+cy - sin+e,] cose+ B 
2 x  

where, for j i  polarized modes, 

(2.46) 

(2.47) 



Cy = C K ~ K ~  [ K ~ I  cos K ~ ~ T  + J sin K ~ ~ T ]  Jmz -+ (2.48) 

and for 9 polarized modes, 

with 

(2.51) 

When evaluating Equations (2.47) - (2.50), it is necessary to replace ( K , ,  K ~ )  by 

their values at the stationary phase point [14], 

( K ~ ,  n y )  -+ ( K O  sin 8 cos 4,  KO sin 8 sin 4)  (2 52) 

2.5.2 Voltage Vector for a Vertical Uniform Fi lament  of Curren t  in  
Region I 1  

This subsection will obtain the voltage vector elements for a uniform vertical 

current filament. Figure 5 shows a vertical filament of uniform current exciting the 

patch. Since the impressed current of this source is known and the electric field 

of J S  in the presence of the grounded dielectric substrate has been developed, the 

voltage vector elements will be obtained using Equation (2.12). For this problem, 

the electric field of JZ can not be simplified by a far zone asymptotic approxima- 

tion. The voltage vector element for this excitation is obtained in integral form. 

Starting with Equation (2.12) and letting 

elsewhere 1 O  
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a) Top view of a microstrip patch excited by a current filament. 

Region I 

..... ..... ..... ..... ..... ..... ..... ..... ..... ..... 

... z.-. 0 ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. 

............. z*.-"T 

b) Side view of a microstrip patch excited by a current filament. 

Figure 5: A rectangular patch microstrip antenna excited by a vertical current 
filament. 
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the volt age vector element becomes 

(2.54) 

Ezm is 

for 2 polarized modes and 

for f polarized modes [13]. 

Substituting Equations (2.55) - (2.56) into Equation (2.54) and integrating 

over t defines the integral equation for the voltage vector element of 

uniform current. For 2 polarized modes, 

and for 3 polarized modes, 

a vertical 

(2.57) 

(2.58) 

Equations (2.57) - (2.58) contain an exponential term dependant on the (z,y) 

location of the vertical current. This factor will produce an oscillatory conver- 

gence in the integration which will complicate its computation with respect to the 

computation of the impedance matrix elements. 

Equation (2.59) shows the general form of the voltage vector element for the 

vertical uniform current. It also shows the transformation from ( K ~ ,  6,) to ( K ,  a) 

coordinates used in the evaluation of the integral. 
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The Vm for a wire of radius a is easily developed from the solution for Vm of 

the filament if the wire is modeled as an infinite number of filaments as radius a 

around some point (zc,yc). Using Equation (2.59), the voltage vector of the wire 

is 

(2.60) 

By evaluating the 4 integral, Equation (2.60) becomes 

(2.61) 

where Jo is the zero order Bessel function. 

2.6 Loading of a Rectangular Micro~trip Patch 

This section will describe the procedure for modifying the voltage vector when 

a lumped load at an arbitrary position (ZL, y ~ )  is attached between the rectangular 

microstrip patch and the ground plane. The load is assumed to be in a vertical 

filament from z = -T to z = 0 with a uniform current of magnitude IL flowing 

through it from the patch to the ground plane. The load current is determined by 

modeling the microstrip antenna as a two port device. 

Equation (2.9) describes the matrix equation for the MM solution of the un- 

loaded microstrip patch. When a load ZL is added, Equation (2.9) becomes 

PI [I1 = 

where [Vi]  is the excitation voltage 

current through the load, and [VL] 

filament at the load position, ( z ~ , y ~  

[vi] - rL [vL] (2.62) 

vector, IL is the magnitude of the uniforiii 

is the voltage vector for a 1 amp current 

). Note that the 1 amp current from which 

[VL] is obtained is in direction opposite to the load current. 
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k 

Ii Q 
Figure 6: The equivalent circuit of a symmetric two port with an Ii current 

source at port 1 and a load 2~ at port 2. 

In order to determine IL, the microstrip antenna is modeled as a two port 

device. Figure 6 shows the equivalent circuit of a symmetric ( 2 1 2  = 2 2 1 )  two port 

device excited at port 1 by an Ii current source and with a load of impedance ZL 

at port 2. From circuit theory, the current through ZL is 

(2.63) 

Since the product of 2 1 2  and Ii is the voltage at port 2 with an open circuit at 

port 2, Equation (2.63) can be written as 

v12 

2 2 2  + ZL IL = (2.64) 

where Vi2 is the open circuit voltage at port 2. 

For the microstrip patch, 1/12 is equivalent to  the voltage at (z,~,,yL) for an 

unloaded antenna. This voltage is called V' and can be found from 

E,  dz  

22 
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where E ,  is the B directed electric field at (z~,y~). This integral can also be 

expressed as 

(2.66) 

where EZm is the B directed field of patch mode m at ( z ~ , y ~ )  and Im is the 

strength of mode m for the unloaded antenna. Since the elements of [VL]  are 

obtained for a 1 amp B directed current filament at ( z ~ ,  y~), Equation (2.12) can 

be written for [ V L ]  as 

(2.67) 

where Em is the total fieldof modem at ( z ~ ,  y~). From Equations (2.66) and (2.67), 

the matrix equation 

VL" = + I t  [VL] (2.68) 

can be written where [I] is the current column solution of Equation (2.9) for the 

unloaded antenna. 

222 for the microstrip patch is obtained by solving for [ I ]  when the excitation 

voltage vector in Equation (2.9) is [ V L ] .  Using this [I] in Equation (2.68) to solve 

for the voltage at the load port, 2 2 2  is the ratio of the voltage at the load port 

to the input current at the load port (which is 1 amp). Note that the excitation 

voltage vector [Vi] is not used in determining 222. 

2.7 Expansion and Weighting Functions Used in the MM Solution 

The expansion and weighting functions used in this MM analysis will now be 

defined. The weighting functions are chosen the same as the expansion functions, 

and thus a Galerkin solution is employed. The expansion functions chosen will 
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be entire domain, which implies that each mode exists over the entire rectangular 

patch surface. Each expansion function will be separable into a function of z and 

a function of y. These functions of z and y are Fourier transformable, as required 

in the derivation of the field equations for a surface current on the patch. Below 

the expansion functions and their transforms are presented. The advantages of 

choosing these expansion functions will also be discussed. 

Starting with the 2 polarized expansion function, a mode n is defined to be 

Jnz = X p ( Z ,  H)Yq(Y, W) 

(2.69) PX QT 

2H 2 w  
- - sin -( t + H) cos -( y + W) 

where now mode n actually specifies an integer doublet p q  where p = 1,2,3,  ... 
and q = 0,1,2,  ... are the bounds. When the Fourier transform, defined by Equa- 

tion (2.26), is applied to  Equation (2.69) the result is 

where 

p = 1,3 ,5 ,  ... 

p = 2,4 ,6 ,  ... 

q = 1,3 ,5 ,  ... 

q = 0 ,2 ,4  ,... . 

Similarily, the 3 polarized modes are 

PIA QI" sin -(y + W) COS -(z + H )  - - 
2 w  2H 
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(2.73) 
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with the corresponding Fourier transform 

(2.74) 

Note that p', q' can be the same or different from p, q. 

The transforms of the expansion and weighting functions are composed of 

even and odd functions of tcz and /cy. Realizing that the integral from -00 to 00 

of an odd function is zero, certain impedance matrix and voltage vector elements 

may be identically zero. As an example, consider the impedance matrix integral 

for an element where both modes n and m are 2 polarized. For this integral, the 

function F(tcz, tcy) (refer to Equations (2.34) and (2.39)) is an even function of tcZ 

and tcy. Using Equations (2.71) - (2.72), Figure 7 shows whether the expansion 

function jnz is even or odd with respect to tcz and tcy for all possible combinations 

of p and q being even or odd. Figure 8 shows whether the integrand is even or 

odd with respect to tcz and tcy for all possible even-odd combinations of Pn, qn,p,, 

and qm and whether the integral is non-zero or not. Only 1/4 of the elements in 

Figure 8 are non-zero. This allows a simplification of the general integral described 

by Equation (2.39). For the non-zero elements, the a integration is performed from 

0 to 7r/2 and the result multiplied by 4. The zero elements are set to zero. Similar 

results are found with Equations (2.35)- (2.37). 

With the voltage vector integrals of Equations (2.57) - (2.58), the exponential 

term can be separated into functions of tcx and tcy and these functions can be 

broken into a sum of an even function and an odd function. Equation (2.75) shows 

this process. 
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Figure 7: The tcz and tcy functions of jnz as even or odd functions with respect 
to p and q. Note: e is even, o is odd. 

Expanding Equation (2.75), the integrand can be written as the sum of four terms, 

each separable into functions of tcz and tcy. By analyzing the even-odd functions 

in each of these terms, only one term is non-zero. Figure 9 shows the integrands of 

an j z  polarized mode voltage vector for all possible p and p even-odd combinations. 

For the voltage vector, none of the elements are zero in general, however, by having 

integrands that are even functions of tcCT and ‘cy, the Q integration can he performed 

from 0 to 7r/2 and multiplied by four. 

One advantage of the entire domain expansion functions is that as the patch 

increases in electrical size, the width of the current transforms decreases. This 

results in more rapid convergence of the integrals involving the current trans- 

forms. The mode shapes also correspond to the resonant current distributions on 

the patch. This enables a simple physical interpretation of the magnitude of the 

elements in the current column vector. 

2.8 Computation of the Scattered Field and Input Impedance 

Once the impedance matrix elements and voltage vector elements are known, 

the current column array can he obtained using standard matrix algebra. Assum- 

ing the current coluinn is known, this section will obtain expressions for the far 
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Figure 8: The tcx and tccI functions of the integrand ( F ( K ~ , I C ~ )  is even for both 
tcz and nY) &s even or odd function with respect to Pn,qn,Pm and qm. 
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n i l  n 

Figure 9: The integrands for a j i  polarized mode voltage vector with respect to p 
and q. 

zone fields of the patch. These far zone fields are referred to as the radiated fields 

when the excitation is by the vertical current filament and as scattered fields when 

the excitation is by an incident plane wave. For excitation by the vertical uniforiii 

current, the input impedance of a mictrostrip antenna will be found. 

The electric field of the patch is found from the sum of the field of each mode 

weighted by the strength of each mode, 

N 
(2.76) 

n=l 

where En is the radiated field of mode n as given by Equations (2.27) and (2.28). 

For the far zone electric field, Equation (2.76) reduces to 

(2.77) 

where e, is the far zone asymptotically approximated field of mode n, defined in 

Subsection 2.5.1. 

The input impedance of a nlicrostrip antenna is the ratio of the voltage at the 

feed port to the input current. The voltage at a port on the nlicrostrip patch for 

arbitrary excitation of the antenna is given by Equation (2.68) in the Section 2.6. 

When the excitation is a 1 amp uniform current at the port where the voltage is 
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desired, the input impedance can be written directly from Equation (2.68) as 

22, = -[rIt[v] (2.78) 

where [I] is the current column solution and [VI is the voltage vector at the input 

port. The probe itself tends to be inductive, and the reactance of this inductance 

can be modeled as [9] 

(2.79) 

where ~ M H ~  is the frequency in megahertz. Using Equations (2.78) - (2.79), the 

input impedance becomes 

22, = -[I]t[v] + J X L .  (2.80) 

The input impedance of a microstrip patch excited by a vertical filament of 

uniform current shows good agreement to the input impedance of a coaxially fed 

microstrip antenna when the thickness of the substrate, T, is much smaller than 

one wavelength. 

2.9 Numerical Difficulties 

There are several numerical problems to overcome when computing the plane 

wave scattering or input impedance of a rectangular microstrip patch antenna. 

One problem is the CPU time to  compute the impedance matrix. This problem 

is especially severe if one desires to compute the wideband scattering or input im- 

pedance of the antenna. Both the impedance matrix and voltage vector element 

integrands contain surface wave poles which produce singularities in the integra- 

tion. Finally, there is the exponential term in the voltage vector element integral 

which produces an oscillatory behavior of that integral. Each of these problems 

will be discussed in the following subsections. 
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2.9.1 CPU Time Reduction for the Impedance Matrix Computation 

Equation (2.39) shows the general form of an impedance matrix element in- 

tegral expression and it is seen that the integrand is a separable function of ,f$ 

and j;. To generate all the elements of the impedance matrix, for every j$ cal- 

culation there must be N calculations of ,f&. Since there are N calculations of 

j$, the total time to compute all the elements would be proportional to N 2 .  The 

impedance matrix is symmetric, therefore only N2/2 elements need be calculated 

to generate all the elements. 

Referring to Equations (2.71) - (2.72), the transforms j$ and ,f; for the cho- 

sen expansion and weighting functions will either be equal or equal and oppoaite, 

depending on n.. This indicates that when j$ is calculated, j L  is also known. 

When computing the elements of the impedance matrix, all N j$ are calculated 

(which means that all N ,fi are obtained as well) within the integral expression of 

Equation (2.39). The impedance matrix elements are then obtained by multiplying 

j$ and ,f; together for n = 1, ..., N and m = 1, ..., N. Since the time required 

to multiply .f$ and ,f; together (which is proportional to N2/2  when taking the 

symmetry into account) is significantly less than the time to compute .f$ andj; 

(which is proportional to N), the total time to compute all the elements of the 

impedance matrix tends to be proportional to N. 

2.9.2 CPU Time for Wide Frequency Band Calculations 

To make a broadband computation of the scattering or input impedance of a 

microstrip antenna, many frequency points are needed to show the behavior near 

resonance since microstrip antennas are narrow band. Thus, although the CPU 

time to evaluate the matrix elements at a single frequency may be tractable, t,he 

30 

I 
I 
I 
1 
I 
I 
I 
I 
1 
I 
I 
I 
I 
I 
I 
1 
I 
I 
I 



I 
I 
I 
I 
I 
1 
I 
1 
I 
I 
I 
I 
I 
I 
I 
I 
I 
1 
I 

CPU time required to evaluate the matrix elements at hundreds of frequencies over 

a wide bandwidth can be prohibitive. 

A way to make broadband calculations of a microstrip antenna starts by an- 

alyzing the impedance matrix with respect to frequency. The elements in the 

impedance matrix are very slowly varying with frequency [16], which is quite dif- 

ferent from the scattered field or input impedance data. An interpolation tech- 

nique can be employed to approximate the impedance matrix elements at fre- 

quencies in between the frequencies at which the elements are calculated using 

Equations (2.34) - (2.37). Over the desired bandwidth, data points separated by 

a frequency interval of A fz are required to characterize the behavior of the micro- 

strip antenna. The number of computations required to get data points every Afz 

would be impractical, so the impedance matrix elements are computed at intervals 

of Afc instead. Typically, Afc >> Afz. Three of the points where the elements 

are calculated directly, fcl, fc2, fc3, (with fcl < fc2 < fc3) will define a frequency 

band of width 2A fc. A quadratic interpolation method can approximate the Val- 

ues of the elements every Afz in between fcl, fc2 and fc2, fc3. By dividing the 

desired frequency band into sub-bands of width 2Afc and applying the quadratic 

interpolation method, data points for the impedance matrix elements at frequency 

intervals of A fz can be obtained for the entire desired bandwidth. 

The CPU time to evaluate the integral expressions for the voltage vector of a 

uniform current filament, given by Equations (2.57) and (2.58), is similar to the 

CPU time required to evaluate the impedance matrix. Analysis of these voltage 

vector elements with frequency shows that they are slowly varying. For radiat,ion 

problems and loaded antenna computations, this voltage vector is interpolated in 

the same manner as the impedance matrix. 
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2.9.3 Surface Wave Poles 

The integrand for the Z,, integrals are singular when DE or D ~ I  of Equa- 

tions (2.32) and (2.33) equal zero and the integrand for the V, integrals are singular 

when DM equals zero. The DE singularities are due to the TE  surface waves and 

the DM singularities due to the TM surface waves that exist on the grounded 

dielectric substrate. As the frequency increases, the number of surface wave poles 

can increase. For a lossless dielectric, these poles lie right on the Re(tc) axis be- 

tween KO, the propagation constant of Region I (in this problem, free space), and 

I C ~ ,  the propagation constant of Region II. When the dielectric is lossy, the poles 

move into the fourth quadrant, but for low loss dielectrics, they are very close to 

the Re(rc) axis. Figure 10 shows a map of the IC plane with poles near the Re(&) 

axis. To avoid these poles without having to compute their location and deforming 

the contour around them, the staggered contour in Figure 10 is used. This method 

has worked well with the imaginary stagger A on the order of 0.11~0 and returning 

to the IC axis around 1 . 1 ~ 2 .  

2.9.4 Oscillatory Behavior of the Voltage Vector 

In Subsection 2.5.2, the integral expression for the voltage vector elements 

of a vertical filament of uniform current was derived. The integrand contains an 

exponential function where the argument is a function of ( ~ f ,  yf). This exponential 

term contributes an oscillatory factor to the integral of Equation (2.59). Figure 11 

is a typical integral with an oscillatory convergence factor. Note that the upper 

limit on this integral is 2 and the plot is comparing the value of the integral verses 

the upper limit of the integral. This integral oscillates around a converged limit, 

with the size of the oscillations decreasing as 2 increases. Since the integral of 

Equation (2.59) is evaluated numerically, the infinite upper limit on the IC integral 
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Figure 10: Contour of integration in the tc plane. 

Re K 

Figure 11: A plot of the integral from 0 to x of f ( x ' )  verses x for an oscillatory 
convergent integral. 
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must be replaced by a finite limit (which is equivalent to 22 in Figure 11) where 

the integral is well converged. This limit can be very large, so it would be desirable 

to determine the converged value before the oscillations around this limit become 

negligible. In Figure 11, 21 represents a point where the converged limit of integral 

is apparent. 

The way used to determine this converged limit is by incorporating a peak 

and valley detector in the numeric integration of the Vm integrals. The numeric 

integration computes the integral at discrete points. When a peak or valley is 

found between three integral points, a quadratic interpolation is performed on 

those three points to find the value of the peak or valley. Once a peak and a valley 

are found, the average value of the two is computed. With each new peak or valley, 

a new average is obtained. The integral is considered converged when the percent 

difference between two consecutive averages of a peak and a valley is less than a 

desired tolerance. 
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CHAPTER I11 

THE INTEGRAL EQUATION AND MOMENT METHOD 

SOLUTION FOR A VERTICAL THIN WIRE THROUGH A 

GROUNDED DIELECTRIC SUBSTRATE 

3.1 Introduction 

This chapter will describe the integral equation and the moment method [2] 

(MM) solutions to the problem of the self impedance of a vertical thin wire and 

mutual impedance between vertical thin wires on a grounded dielectric substrate. 

The basic geometry of this structure is shown in Figure 12. 

The solution is begun by using the equivalence theorem to replace the perfectly 

conducting thin wire by an unknown surface current Js. Using the thin wire 

approximations, Js is replaced by a vertical filament of current, %Is  [20,21]. Then, 

the integral equation for &Is is obtained by requiring that the total tangential 

electric field along the filament be equal to zero. Finally, the integral equation is 

solved using the MM. 

3.2 Derivation of the Integral Equation 

This section describes the use of the surface equivalence theorem to derive the 

integral equation for the problem of radiation by a perfectly conducting vertical 

thin wire extending from an infinite perfectly conducting plane and through an 

infinite dielectric layer directly on top of the perfectly conducting plane. The 
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............................................................................. z
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z = --'T 
.......................................... g.&:efi: : : : .x:x: : : : : : : : : : ,  : : ................................. ............................. 

Figure 12: Side view of a vertical, perfectly conducting thin wire extending from 
a perfectly conducting ground plane through a dielectric layer. It is excited by an 

arbitrary source (Ji ,Mi) that can be located in either Region I or I I .  

geometry of a dielectric layer on top of a perfect conductor will be referred to as a 

dielectric coated ground plane. Figure 12 shows a perfectly conducting thin wire 

of length L in the ii direction and radius a (a << A)  extending from a grounded 

dielectric substrate. The region above the dielectric layer, referred to as Region I ,  is 

free space (permeability po,  permittivity €0). The region inside the dielectric layer, 

referred to as Region 11, has a permittivity of €2, permeability of p o ,  and thickness 

2'. The origin of the coordinate system is placed at the the point where the vertical 

wire intersects the planar interface of Region I and Region I I .  The wire is excited 

by source currents (Ji ,Mi) which illuminates the wire with fields (Ei,Hi). Note 

that (Ei, H i )  are the fields of (Ji,Mi) in the presence of the grounded dielectric 

substrate without the wire. (E,H) denote the electric and magnetic fields from 

(Ji, Mi) in the presence of the grounded dielectric substrate with wire. 
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Figure 13: Side view of the equivalent vertical current Js replacing the perfectly 
conducting thin wire on a dielectric coated ground plane. It is in the presence 

electric and magnetic currents (Ji, Mi). 

Using the Equivalence theorem and ignoring the currents on the end cap, the 

equivalent surface current on the wire surface will be 

Since the wire is thin, surface current on the wire surface is assumed to be P 
directed and uniform with respect to 4. So Js can be written as 

S r  r J ' = ~ I  ( 2 )  a t p  = a  

where the wire current I s  is related to the wire surface current J s  by 

The equivalent problem is illustrated in Figure 13. The total electric and magnetic 

fields in either region are 

E = E i + E S  
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H = H Z + H ~  (3.5) 

where (Es,Hs) are the fields radiated by the equivalent current Js in the presence 

of the dielectric coated ground plane. 

On the wire surface, the tangential components of the total electric field must 

equal zero. Then, from Equation (3.4) 

(E2 +Es) x 3 = 0 (3.6) 

For the B directed wire this can be written as 

(3.7) -E, S =E: 

Instead of enforcing the boundary condition on the wire surface, it will be enforced 

the center line of the wire. This technique is known as the filamentary test case. 

3.3 The General Moment Method Solution 

This section will use the integral equation developed in the preceding section 

to develop a general MM solution for the geometry of Figure 12. The unknown 

vertical current filament in the integral equation will be replaced by a sum of N 

known expansion functions of unknown strengths. An inner product between each 

side of integral equation and a sum of N known vector weighting functions will 

yield the matrix equation. The expressions for the impedance matrix and voltage 

vector elements will be given. 

To begir the solution for the unknown equivalent vertical current, I s  is rep- 

resented as a sum of N known expansion functions 
N 

= 
n=l  

where I: is the n expansion function and In represents the unknown strength of the 

n. expansion function. The superscript S is retained to distinguish the expansion 
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function from the unknown strength. Expansion function n is nonzero over the 

range znl 5 z 5 ~ n 2 .  Equation (3.7) can be written as 

N 
- InE,”, = E:. (3.9) 

n=l 

E:n is the E directed component of the electric field of expansion function n radi- 

ating in the presence of the grounded dielectric slab. 

By taking the inner product of Equation (3.9) with a set of N known weighting 

functions located on the wire center line, Equation (3.9) is reduce to the matrix 

(3.10) 

where [ Z ]  is an N x N impedance matrix, [ I ]  is a N element current column array 

containing the unknown coefficients In of Equation (3.8) and [V]  is a N element 

voltage vector column array. 

The scalar weighting functions employed in this solution will have the form 

w m  = ~i(z) at p = o (3.11) 

and thus are chosen identical to the expansion functions. 

Expressions for typical elements of [ Z ]  and [VI are given by 

and 

(3.12) 

(3.13) 

3.4 Evaluation of the Impedance Matrix 

In this section, exact integral expressions will be developed for the impedance 

matrix elements using the general expression developed in the preceding section. 
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The equations will contain arbitrary expansion functions I{ and arbitrary weight- 

ing functions I;. The electric field of a 2 directed vertical current filament in 

either Region I I  or Region I I  is found in plane wave representation. This electric 

field is used in Equation (3.12) to obtain the impedance matrix elements. 

The vector magnetic potential for an infinitesimal vertical current of strength 

I in free space at the origin is 

where 

KO = 4 G i G  

(3.14) 

(3.15) 

e-J"OT and dz is the infinitesimal length of the current element. The 7 term in 

Equation (3.14) can be represented as a spectrum of plane waves [20] by 

(3.16) 

where Jo is the Bessel function of order 0, the 7 in the exponential term is - for 

t > 0 and + for z < 0 and yz is defined as 

Substnitouting Equation (3.16) into Equation (3.14) yields 

(3.17) 

(3.18) 

If this infinitesimal vertical current element is placed in the dielectric layer of 

the dielectric coated ground plane (Region 11) at p' = 0 and z = z',  the vector 

magnetic potential in Region I I  can be written as, for -T 5 t 5 t', 
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and for z' 5 z 5 0, 

and for z 2 0, 

where, from Equations (3.17) and (3.15), 

(3.21) 

6 2  = "dC2PO 

(3.23) 

(3.24) 

and, the coefficients Ro, R-T, 7'0 are chosen to satisfy the boundary conditions 

EII x i ?  = 0 at z = -T (3.25) 

E I I X ~ ?  = E ~ x i i  a t z = O  (3.26) 

H I I X ~ ?  = H ~ x i i  a t t = O  (3.27) 

where the subscript denotes the region in which the field is defined. The E and H 

fields of the vector magnetic potential can be found from 

H = V X A  (3.28) 

E = - ( V 2 + ~ 2 ) A  1 
3 ° C  

(3.29) 

where ( c , K )  are ( E O , K O )  for Region I and ( 6 2 , ~ ~ )  for Region I I .  Substituting 

Equations (3.19) - (3.21) into Equations (3.28) - (3.29) and applying the boundary 

conditions defined by Equations (3.25) - (3.27), the vector magnetic potential of 

a vertical current of infinitesimal length located in Region 11 becomes, for -T 5 

z 5 2, 
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and for z' 5 z 5 0, 

e-JTz2T COS r22( Z' + 2') p d p  (3.31) 

and for z 2 0, 

where 

(3.32) 

(3.33) 

If the vertical current of infinitesimal length is located in Region I at a point 

( p  = O,z  = z ' ) ,  the vector magnetic potential can be written as, for -2' 5 z 5 0, 

and for 0 5 z 5 z', 

(3.36) 

and for z' 5 z ,  

where the coefficients R'_,,Rb, and Ti are solved for by substituting Equations 

(3.35) - (3.37) into Equations (3.28) - (3.29) and applying the boundary conditions 

of Equations (3.25) - (3.27). The vector magnetic potential for a infinitesimal 

vertical current element in Region I is, for -T 5 t 5 0, 
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and for 0 5 z 5 z l ,  

and for z1 5 z ,  

In general, the vector magnetic potential of an infinitesimal vertical current 

element located in either Region I or Region 11 can be written as 

(3.41) 

The functions f and g are harmonic functions of z‘ and z respectively. Their 

second derivative with respect to z1 or t is 

a2 2 -f = - r f  az12 

a2 2 
@9 = - 7 9  

(3.42) 

(3.43) 

where -y = yzl for f or g in Region I and y = yz2 for f or g in Region I I .  

Now that the vector magnetic potential for an infinitesimal vertical current 

element is known, the vector magnetic potential for a current of finite length can be 

found. If a filamentary vertical current I (z’)  exists between z1 and 22 ,  the vector 

magnetic potential is found by integrating the product of I ( z l )  and the appropriate 

vector magnetic potential for an infinitesimal current element with respect to z1 

between zl and 22. Although the current can be continuous through the Region I 

- Region 11 interface, it will be analyzed in terms of the sections that wholly exist 

in either Region I or Region I I .  The expressions generated for the vector magnetic 
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potential of the vertical current will have both zl and z2 lie in either Region I or 

Region II. 

The general form of the vector magnetic potential of a vertical filamentary 

current is given by Equation (3.41). The form of the expression depends on the 

location of z. For z 5 21 < "2, the general equation can be written as 

and for zl < 22 5 z, 

and for zl 5 z 5 z2, the general equation is written as 

(3.44) 

(3.45) 

(3.46) 

where the L subscript indicates that the f and g for z 5 z' is used and the 

subscript IT indicates that the f and g for z 2 z' is used. With the restriction 

that zl and 22 are both in the same region and by examining Equations (3.30) - 
(3.31) and (3.39) - (3.40) it is seen that the following relationship exists between 

fU79U,fLl and 9L. 

These relationships are a result of reciprocity and allow Equations (3.44) - (3.46) 

to be written as 
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(3.50) 

In order to find the impedance matrix elements for the thin vertical wire, the 2 

directed electric field is needed. From Equation (3.29), the E, field from i directed 

vector magnetic potential is 

(3.52) 

Using Equations (3.49) - (3.52), the general expressions for the E, fields can 

be written. For z 5 zl < z2, 

and z1 < z2 5 z 

and for zl  5 z 5 2 2 ,  

(3.55) 

By examining Equations (3.30) - (3.32), the appropriate h, f, and g can be 

determined to write the EZn field equations for a vertical filamentary wire located 

in Region 11 with mode current I: and end points znl and z,2. For -7’ 5 z 5 z , ~ ,  
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and for zn1 <_ z 5 zn2, 

and for zn1 <_ t n 2  5 z 5 0, 

and for t 2 0, 

(3.59) 

where 

P2(a:l ,  a : 2 , 4  = Jz2 [e-Jrz2" + Xn/i cosyz2(a: + T ) ]  Z ( Z )  da: 

e2(z1,"2, i )  = 1; c0s7z2(z  + T ) i ( z )  d z .  

(3.60) 

(3.61) 
"1 

From Equations (3.38) - (3.40), the h, f, and g for a vertical filamentery current 

in Region I can be determined and the Ez can be written for a mode current 1: 

with endpoints at zn1 and t n 2 .  For -2' 5 t 5 0, 

(3.62) 
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(3.64) 

and for 5 zn2 5 z ,  

where 

(3.66) 

With the integral expressions for the En, field of a vertical filamentary modes 

in either R.egion I or Region 11, the impedance matrix elements can be obtained 

using Equation (3.12). The self impedance of a thin wire of radius a will be modeled 

as the mutual impedance between two filaments of equal length separated by p = a .  

Therefore, the expressions for the impedance matrix elements will be given for two 

modes separated in the p dimension by the distance a. In order to simplify the 

expressions for the elements of the impedance matrix, an I; mode will be required 

to exist entirely in either Region I or Region I I .  This is the same requirement 

placed on an I$ mode in the development of the E,, expressions. The impedance 

matrix element expressions are given for the different locations that an I: mode 

and an I: mode can have in the z dimension. For an n mode and an m. mode 

both located in Region I I  with zm2 5 znl ,  
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and for zn1 

Zmn = 

- 

and for zn2 

= Zml and ~ n 2  = ~ m 2 ,  both the n and m modes in Region I I ,  

_< zm1, the n and m modes in Region 11, 
, 

and for mode n in Region II and mode m in Region I, 

For mode n in Region I and mode rn in Region II, 

and for both mode n and mode m in Region I with zm2 5 zn1, 

and for zml = znl and ~ m 2  = ~ n 2 ,  both modes n and m in Region I, 

zmn = 

+ 

and for zn2 5 Zml, both modes n and m in Region I, 

(3.71) 

(3.72) 

(3.73) 

(3.74) 

(3.75) 

The impedance matrix elements of Equations (3.68) - (3.75) can also describe 

the mutual impedance between two filamentary vertical currents. If the distance 
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between the two filamentary currents is PO,  replacing the radius a with po in the 

preceding impedance matrix element expressions will define the impedance matrix 

element expressions for the mutual impedance. 

3.5 Evaluation for the Voltage Vector 

The wire will be excited by the so-called delta gap generator [19] at z = -T. 

Using this model, the incident electric field of a Vo volt delta gap generator is given 

by 

E2 = 2Vob(t + T ) .  (3.76) 

Substituting Equation (3.76) into Equation (3.13) results in the expression for the 

voltage vector elements. 

v, = VOIi(-T)  (3.77) 

Equation (3.77) shows that V, will be nonzero only if the weighting function 1; 

is nonzero at t = -T. 

3.6 Expansion and Weighting Functions 

Now that the general equations of the impedance matrix and voltage vector 

elements are defined, the expansion functions for I: and the weighting functions 

for I; will be defined. The wire will be broken into N segments called monopoles. 

Figure 14a shows a vertical wire divided into four segments. There will be N 

modes on the wire, all but one consisting of two monopoles to form a dipole. 

The monopole directly over the ground plane is one mode since its image in the 

ground plane makes it an equivalent dipole. Figure 14b shows the dipole modes 

formed by the four monopole segments on the wire. The functions F and G will 

be evaluated for each region using an arbitrary monopole. The expressions for the 
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electric field at a point between the endpoints of a monopole and the impedance 

matrix elements for overlapping monopoles will be evaluated. 

The vertical wire is broken into a N segments. Figure 14a shows a vertical 

wire on a dielectric coated ground plane broken into four segments. These segments 

have a piecewise sinusoidal function associated with them and are referred to as 

monopoles. The piecewise sinusoidal function is described by 

or 

elsew here I o  

elsewhere I o  
where 

KO for Region I 

”2 for Region I I  
= { 

AZ = 22 - 

7r 
KdAz 5 -. 2 

(3.78) 

(3.79) 

(3.80) 

(3.81) 

(3.82) 

The and functions shown in the integrands of Equations (3.56), (3.58), 

(3.59), (3.62), (3.63), and (3.65) are obtained for the monopoles of Equations (3.78) 

and (3.79) between points 21 and 22. For the il function, 
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7 / 7  

a)  A vertical wire through a grounded dielectric substrate broken into four seg- 

men t- s . 

b)  The piecewise sinusoidal functions on each segment to construct the MM modes. 

Figure 14: An example of a MM modal model for a vertical wire through a 
grounded dielectric subst,rate. 
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(3.84) 

+ yz2 sin QAZ sin yz2( 21 + T)) (3.86) 

and for the i 2  segment function, 

(3.88) 

When a dipole is constructed from two monopoles, some terms in the F and 6 
will cancel. These terms are due to the discontinuous current in the monopole. The 

first step for identifying terms that cancel is to determine the i directed electric 

field of a dipole. For this step the terms that cancel are called charge terms, since 
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the physical representation is a charge at the end of the monopole where the current 

is non zero. The integrand of the spectral integral for the E, field of a B directed 

monopole consists of terms that have a /3-2 dependance and a /3 dependance. 

When two monopoles are combined to form a dipole, all ,f3& dependent terms are 

charge terms and cancel regardless of the position of the monopoles or the field 

point. Without removing the charge terms, the integrals of the monopole are non 

convergent. All of the charge terms are products with either 7,l and sinnoAz in 

them for Region I or yz2 and sinn2Ar in them for Region I I .  As an example, for 

is in the 

4 1 

of the il function, the charge term is - 3 ~ ~ 1  sinrcoAte-~zf*1 when 

integral equation for the a directed electric field. 

The last step in identifying terms that cancel requires the determination of 

the dipole to dipole impedance matrix element integral expressions. The terms 

that cancel from these expressions are of similar algebraic form as charge terms, 

and are called current discontinuity terms. Although the integrals will converge 

with the current discontinuity terms, removing them can decrease the convergence 

time of the numerical integration. The identification of the current discontinu- 

ity terms involves examining all possible dipole to dipole configurations. These 

configurations are dependent upon the z location of the monopoles. 

In Equations (3.57) and (3.64), t*he P and e are functions of the z component 

of the field point. Evaluating and e for the piecewise sinusoidal expansion 

function and expanding the part of the integrands in Equations (3.57) and (3.64) 

which are a function of z ,  the integrands can be simplified. For (3.57), the part 

of the integrand that contains the functions of z is 
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Letting I: = 21, evaluating @ and G, and simplifying the result, Equation (3.91) 

Doing the same with I: = 22, Equation (3.91) becomes 

-"2 COS 722(  zn2 + T )  COS Q A ~  + "2 COS 722(znl + T ) ) ] )  
(3.93) 

For Equation (3.64), the part of the integrand which contains functions of z is 

Letting I: = il and evaluating, Equation (3.94) becomes 

yzl and sin "oAz or or 722 and sin ~ 2 A z .  
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By using Equations (3.92) - (3.93) in Equation (3.57) and applying this result 

to Equation (3.12), the integral expression for an impedance matrix element of 

overlapping piecewise sinusoidal monopoles with expansion mode I: and weighting 

mode 12 can be written. For the monopoles in Region I I  and with I:=il, 

For the monopoles in Region II with I:=;,, 

&nn = 

+ 
+ 
- 

where 

Note that FO is the same as For a piecewise si- 

nusoidal monopole, the integral in Equation (3.99) can be obtained from Equa- 

tions (3.83) and (3.87) by replacing yzl by r22 and no by n2. Using Equations (3.64) 

and (3.95) - (3.96) the impedance matrix element for overlapping monopoles’in Re- 

gion I becomes, with I;=ii, 

with yzl replaced by y22. 
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(3.100) 

For the monopoles in Region I with I:=;,, 

3.7 Numerical Difficulties 

The integrand for the Zm, integrals are singular when DM equals zero. The 

D M  singularities is due to the T M  surface waves that exist on the dielectric coated 

ground plane. As the frequency increases, the number of surface wave poles can 

increase. For a lossless dielectric, these poles lie right on the Re(&) axis between 

K O ,  the propagation constant of Region I (in this problem, free space), and “2, the 

propagation constant of Region II. When the dielectric is lossy, the poles move 

into the fourth quadrant, but for low loss dielectrics, they are very close to the 

Re(“) axis. Figure 10 in Subsection 2.9.3 shows a map of the K plane near the 

Re(“) axis, including a staggered contour which avoids the surface wave poles. 
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CHAPTER IV 

NUMERICAL RESULTS 

4.1 Introduction 

This chapter compares calculated and measured input impedance and radar 

cross section (RCS) of unloaded and loaded rectangular patch microstrip anten- 

nas. The mutual impedance of vertical wires in a grounded dielectric substrate is 

compared to previously calculated data [21]. The first section will compare calcu- 

lations to a compact range measurement of the RCS of a rectangular patch on a 

grounded dielectric substrate. A calculation will be made for input impedance of 

this patch when corner fed in order to show the modal relationship between RCS 

peaks and input impedance resonances. The patch will then be loaded near the 

corner with a 50 ohm load. The RCS measurement and calculation for the loaded 

microstrip patch will be compared. The next sectioh will compare the calcula- 

tion to the measurement for the input impedance of a microstrip antenna. This 

will include a wide band comparison and near resonance narrow band compar- 

isons. The antenna will be loaded with a 50 ohm load near the corner and the 

input impedance calculation and measurement compared. Next, the calculation 

of the mutual impedance between two vertical thin wires imbedded in a grounded 

dielectric substrate will be compared to previously calculated data (211. 
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Y 
4 
I 

Figure 15: The rectangular microstrip antenna used for RCS calculation and 
ineasureinent . 

4.2 Plane Wave Scattering Results 

This section will compare the MM computation for the radar cross section 

(RCS) of a microstrip patch to measurement. Figure 15 shows the geometry of the 

microstrip patch used for the unloaded RCS data. Figure 16 shows the geometry 

of the same patch with location of the vertical filament of current used for an input 

impedance calculation. Figure 17 shows the same patch used for loaded RCS data. 

The patch is loaded with 50 ohms for a comparison of calculated and measured 

RCS data. The measured patch was loaded through a coaxial feed. 

The patch has dimensions of 2H = 3.66 cm and 2FV = 2.60 cm. The substratme 

has t-hickness T = 0.158 cm, relative permittivity = 2.17, and a loss tangent of 

0.001, The incident plane wave has an angle of incidence of (e j ,  q5i) = (60°,  45') 

and its electric field is e polarized. Figure 18 shows the RCS of the patch from 

2 to 10 GHz. Figures 19 and 20 show the calculated real and imaginary parts of 

t,he input iiiipedance of this patch over the same frequency range when excited by 
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I 2.60 cm I l k  3.66 cm 

- +x 

(x,,y,) = ( 1 . 6 7  cm,1.14 cm) 

Figure 16: The rectangular microstrip antenna of Figure 15 with a feed port for 
input impedance calculation. 

e3.66 cm b 
+ X  - -  

( E L , ~ , )  =(1.33 cm,0.80 cm) 

Figure 17: The rectangular microstrip antenna of Figure 15 loaded for RCS 
calculation and measurement. 
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a vertical current loc ted t (zf,yj)=(1.60 cm,l.lO cm), which is very close to a 

corner of the patch. Figure 21 compares the wideband RCS of the same patch 

when loaded by 50 ohms at ( z ~ , y ~ ) = ( 1 . 3 3  cm,0.80 cm). 

The MM computations of Figures 18 - 21 were made with Afc = 400 MHz 

(the frequency interval for impedance matrix and wire voltage vector computation) 

and Afz = 5 MHz (the frequency interval for the M M  solution) [14]. The solid 

curves are the calculated data with the dots on Figure 18 representing the points 

where the impedance matrix has been calculated. The number of modes used to 

calculate the data of Figures 18 - 20 were 17 for the frequency range of 2 to 6 GHz 

and 31 from 6 to 10 GHz.  Note that the changing of the number of modes causes 

a discontinuity at 6 GHZ for some of the calculated data. To test for convergence, 

the MM solution was run for 84 modes. The data was virtually the same. The 

total CPU time to calculate the data in Figure 18 was about 27 minutes on a VAX 

11/780. The computation of the data in Figures 19 - 20 took about 30 minutes 

on a VAX 8550. For Figure 21, 4 modes were used to calculate the curve from 2 

to 5 GHz,  12 modes from 5 to 7.5 GHz,  and 24 modes from 7.5 GHz to 10 GHz.  

Discontinuities in the calculated data at 5 GHz and 7.5 GHz are due to changing 

the number of modes. The total CPU time to compute the data of Figure 21 was 

about 30 minutes on a VAX 8550. 

Comparing Figures 18 - 20 shows that the same modes can be excited by both 

sources. The edge feed location was chosen to excite all modes in the displayed 

frequency range. Some of the peaks in the RCS and resonances in the input 

impedance are caused by a resonance of a single patch mode, others are caused by 

the mutual coupling between patch modes. This will be analyzed in more detail 

in Section 4.3. 
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2H = 3.66cm 2 W  =2.60cm 

€r =2.17 t a n 8  = 0.001 T = 0.158cm 

( ei , +i )  = (600,450) s* POLARIZATION - CALC U L AT ED -- MEASURED 

6 8 IO 
f ( G H z )  

Figure 18: A comparison of the computed and measured theta polarized RCS of 
a rectangular patch on a grounded dielectric substrate. 
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2H=3.66cm 2W=2.60cm 
€,=2.17 tan6=0.001 T=0.158cm 

X , = l .  67cm yf=1.14cm 

F (GHz) 

Figure 19: A calculation of the real part of the input impedance for the 
microstrip antenna of Figure 16. 
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2H=3.66cm 2W=2.6cm 
€:=2.17 tan6=0.001 T=0.158cm 
xf=1.67cm y =l. 14cm f 

0 I l l l l l l l  I I I I I I I I I I I I l l l l l l l l l l l l l I l l l l  I I  
e I 0 

Figure 20: A calculation of the imaginary part of the input impedance for the 
microstrip antenna of Figure 16. 
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F (GHz) 

Figure 21: A comparison of the computed and measured theta polarized RCS of 
a loaded rectangular patch on a grounded dielectric substrate. 
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4.3 Input Impedance Results 

This section will compare the calculated input impedance of a microstrip an- 

tenna excited by a filament of uniform current to the input impedance of a coaxially 

fed microstrip antenna. The measured antenna is loaded through a coaxial feed. 

Note that the current filament is not a model for the coaxial feed since it does 

not account for the aperture in the ground plane and the current on the outer 

conductor of the coax. Figure 22 sliows the geometry of the unloaded microstrip 

antenna used to generate Figures 25 to 31. Figure 23 shows the geometry of the 

edge loaded microstrip antenna used to generate Figures 32 and 33. Figure 24 

shows the geometry of the corner loaded microstrip antenna used to generate Fig- 

ures 34 and 35. The thickness of the substrate was measured to be 0.088 cm. 

The loaded antenna had a load impedance of 50 ohms. The relative permittivity 

and loss tangent, as supplied with the substrate, are 2.17 and 0.0015 respectively. 

Referring to Figure 5a, the feed is located at ( z ~ f , y ~ f )  = (0.85 cm,1.22 cm). Fig- 

ure 25 shows the wide band input resistance and Figure 26 shows the wide band 

input reactance of this microstrip antenna. Figures 27 - 31 show the calculated 

and measured narrow band input impedance plotted on a Smith Chart for each 

resonance between 1 and 7 GHz. Figure 34 shows loaded input impedance from 

1 to 4 GHe with the load located at (z~,y~)=(1.53 cm,l.l cm). Figure 35 shows 

the loaded input reactance. 

For the calculated data of Figures 25 and 26, Afc was chosen to be 400 MHz 

and Afz was chosen to be 5 MHe. Twelve modes were used in the MM solution t80 

compute the curve between 1 and 3.5 GHz, 24 modes were used for the calculation 

between 3.5 and 6.4 GHe, and 50 modes were used for the calculation of the curve 

between 6.4 and 8.0 GHe. The convergence of this data was tested by using 24 
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5.0 cn 

(x,,y,) = (0.85 cm,1.22 cm) 

Figure 22: The rectangular microstrip antenna used for input impedance 
calculation and measurement. 

r 
I 

(Xf I Yf 1. 
5.0 cn 

(X€ I Yf ) = (0.85 cmJ.22 cm) 
(x,.,yJ = (0.0 cm,-2.4 cm) 

Figure 23: The rectangular microstrip antenna of Figure 22 loaded at the edge 
for input impedance calculation and measurement. 
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(X€ I Yf I 

x 
I 

7 
5.0 cn 

t-3.4 cm 

= (0.85 cm,1.22 cm) 
(XL I YL 1 = (-1.5 cm,-2.2 cm) 

Figure 24: The rectangular iiiicrostrip antenna of Figure 22 loaded at the corner 
for input impedance calculation and measurement. 

modes in the range from 1 to 3.5 GHz, using 32 modes from 3.5 to 6.4 GHz and 

using 72 modes from 6.4 to 8.0 GHz. The curves were virtually the same after the 

increase in modes. The total CPU time needed to generate the calculated data of 

Figures 25 and 26 was about 37 minutes on a VAX 8550. 

For the calculated narrow band data of Figures 27 - 31, Afc was chosen to 

be 200 MHz and Afz was chosen to be 1 MHz. The number of modes used to 

compute the data of Figures 27 and 28 was 4. For Figure 29, 12 modes were used, 

for Figure 30,32 modes were used and for Figure 31, 72 modes were used. The dots 

on the calculated and measured curves represent the measured frequency closest 

to resonance, and the frequencies 1% and 2% above and below the closest- resonant. 

frequency. 

The calculation for loaded input impedance of Figures 34 and 35 was made 
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2H=3.4cm 2W=5.0cm 
Er=2,17 tan6=0.0015 T=0.08779cm 
xf =O .85cm y f=l. 22cm 

0 I l l l l l l l l l l l l l l l  I l l l l l l l l l l l l l l l l l l  

r) I 0 

- 
_ -_ - - - -  

CALCULATED 
MEASURED 

F (GHz) 

Figure 25: A comparison of the computed and measured real part of the input 
impedance for a microstrip antenna. I 
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2H=3.4cm 2W=5.0cm 
E: ==2.17 t a d = O .  0015 T=O. 08779cm 
xf=0.85cm y =1.22cm 

f 

i CALCULATED 
MEASURED 

- - 
( f I 0 -  

-c 
0 

- E In- 

c - 
- c 

-4 0- 
x - 

- 
- 

0 -  
Lo- 

I _  - - 
0 -  s- 

I -  
- 
- 

~ - , , , ,  1 1 1 1 , 1 1 1 1  1 1 1 1  1 1 1 1  I 

2. 3. 4. 5. 6. 7. 0. I 1. 

F (GHz) 

Figure 26: A comparison of the computed and measured imaginary part of the 
input impedance for a microstrip antenna. 
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2H=3.4cm 2W=5.0cm 
G=2.17 tan6=0.0015 T=O.O8779cm 
x ,=O . 85cm y ,=1.22cm 

MEASURED --- 

-------  CALCULATED 

Figure 27: A comparison of the computed and measured input impedance around 
first resonance plotted on a Smith Chart. 
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2H=3.4cm 2W=5.0cm 
Er=2.17 tan6=0.0015 T=O.O8779cm 
xf=0.85cm yf=1.22cm 

MEASURED 
CALCULATED 

--- 

-- - - - - -  

Figure 28: A comparison of the computed and measured input impedance around 
second resonance plotted on a Smith Chart. 
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2H=3.4cm 2W=5.0cm 
€,=2.17 tan6=0.0015 T=O.O8779cm 
x f = O .  85cm y f=l. 22cm 

--- MEASURED 
- - - - - - -  CALCULATED 

Figure 29: A comparison of the computed and measured input impedance around 
third resonance plotted on a Smith Chart. 
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2H=3.4cm 2W=5.0 
E r=2.17 tan6=0.0015 T=0.08779cm 
x ,=O. 85cm y f=l. 22cm 

MEASURED --- 
- - - - - _ - -  CALCULATED 

Figure 30: A comparison of the computed and measured input impedance around 
fourth resonance plotted on a Smith Chart. 
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2H=3.4cm 2W=5.0cm 
E r  =2.17 tan6=0.0015 T=0.08779cm 
x =0.85cm yf=l.22cm 
f 

--- MEASURED 
CALCULATED - _ _ _ - - _  

Figure 31: A comparison of the computed and measured input impedance around 
fifth resonance plotted on a Smith Chart. 
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2H=3.4cm 2W=5.0cm 

Er=2.17 tan6=0.0015 T=0.08779cm 

xf=0.85cm y f =1.22cm x,=O.Ocm yL=2.4cm z,=50 0 
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  
0 cv 

1 CALCULATED 
MEASURED _ _ _ _ - -  

I 
I 
I1 
I' 

I A I  

4. 5. 6. 
F (GHz) 

7. 8. 

Figure 32: A comparison of the computed and measured real part of the input 
impedance for an edge loaded microstrip antenna. 
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2H=3.4cm 2W=5.0cm 

E .=2.17 tan(j=O. 0015 T=O. 08779cm 

Xf=0.85cm yf=1.22cm xL=O.Ocm yL=2.4cm Z,=50 (l 
0 I I I I I l I l l l l l l l l l l l l 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  

CALCULATED 
MEASURED - - - _ _ _  

r 
F (GHz) 

Figure 33: A comparison of the computed and measured imaginary part of the 
input impedance for an edge loaded microstrip antenna. 
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2H=3.4cm 2W=5.0cm 
Er=2.17 tan6=0.0015 T=O.O8779cm 

xf=0.85cm y =1.22cm xL=1.5cm yL=2.2cm z,=50 f2 
f 

F (GHz) 

Figure 34: A comparison of the computed and measured real part of the input 
impedance for a corner loaded microstrip antenna. 
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2H=3.4cm 2W=5.0cm 
E f2.17 tanb=O. 0015 T=O .08779cm 

X,=O .85cm y,=l .22cm X L=l. 5cm yL=2. 2cm 2,=50 

/ 
/ 

r 

CALCULATED 
_ - _ _ - _  MEASURED 

- 
0 -  cu 

1 
I 

l l l l ~ l l l l ~ l l l l ~ l l l l ~ l l l l ~ l l l l ~  

1.0 1.5 2.0 2.5 3.0 3.5 4.0 

F (GHz) 

Figure 35: A comparison of the computed and measured imaginary part of the 
input impedance for a corner loaded microstrip antenna. 
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2H = 3.4cm 2W = 5.0cm 
E, = 2.17 tan6 = 0.0015 T = 0.08779cm 

xf= 0.85cm yf= 1.22cm %= -1.5cm yL= -2.2cm ZL= O f l  

I 
I 
I 
I 
I 
I 
I 
II 

II 
II 

n 
n 

k 

UNLOADED MEASUREMENT 

SHORTED MEASUREMENT _ _ _ _ - - - -  

I 

I 
I -  

3. 4. 5. 6. 7. 8. 
F (GHz) 

Figure 36: A comparison of the measured real part of the input impedance for an 
unloaded and corner shorted microstrip antenna. 
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2H = 3.4cm 2W = 5.0cm 
€= = 2.17 tan6 = 0.0015 T = 0.08779cm 

xf = 0.85cm yf = 1.22cm xL= -1.5cm yL = -2.2cm Z,= 0 R 
0 I l l l l l l l l l l l l l l l l l l  I l l l l l l l l l l l l l l  
9 

UNLOADED MEASUREMENT 
SHORTED MEASUREMENT 

- - 
- - - - - - - - - -  

- - 
- 

0- 
9 - 

- 
- 

- 
- 
- 
- 
- 

I 
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- - 
- - 
- - 
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- 
e 1 1 1 1 ~ 1 ' " ~ " " ~ " " ~ " " ~ ' " ' ~ " "  

2. 3. 4. 5. 6. 7. 8. 1. 

F (GHz) 

Figure 37: A comparison of the measured imaginary part of the input impedance 
for an unloaded and corner shorted microstrip antenna. 
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2H = 3.4cm 2W = 5.0cm 
E x =  2.17 tan6 = 0.0015 T = 0.008779cm 

xf= 0.85cm yf= 1.22cm xL= -1.5cm yL= -2.2cm Z,= 0 0  

0 
0 rv 

0- 
Y2 

- z 
-c 
0 
-0 s 
[1L 
c .- 

0 In 

0 

1. 2. 3. 4. 5. 6. 7. 8. 

F (GHz) 

Figure 38: A comparison of the computed and measured real part of the input 
impedance for a corner shorted microstrip antenna. 
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0 I l l l l l l l l l l l l l l l l l 1 I I I I I I I  I I I I I I I I  s - CALCULATED 

0 1  s 1 1 1 1 1 1 1 1 1 1 ~ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 (  
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Figure 39: A comparison of the computed and measured imaginary part of the 
input impedance for a corner shorted microstrip antenna. 
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with Afc = 400 MHz and Aft = 6 MHz. The total number of modes used was 4. 

The CPU time require to generate this data on a VAX 8550 was about 4 minutes. 

Figures 36 and 37 show a comparison of input impedance for the measured 

unloaded and shorted microatrip antenna. The geometry of this antenna is shown 

in Figure 24 where the load port is now a vertical wire from the patch to the 

ground plane. One might expect a short near the corner to eliminate resonances, 

particularly the first three since they were greatly reduced by the impedance load. 

Figures 36 and 37 clearly show that this is not the case. Figures 38 and 39 show 

a comparison of calculated input impedance and measured input impedance for 

the shorted microstrip antenna. The calculation was made using 4 modes from 

1.5 GHe to 2.5 GHz, 12 modes from 2.5 UHz to 4.5 GHz, 17 modes from 4.5 GHe 

to 6.2 GHz, and 32 modes from 6.2 GHz to 7.5 GHz. 

The calculated and measured data shown are close in resonant frequency but 

usually differ in magnitude. Thie can be accounted for by the following. First, the 

excitation for the calculation is not a model for a coaxial feed. Second, the vertical 

filament of current excitation does not include an attachment mode between the 

filament and the patch. Third, the microstrip antenna has very high Q resonances 

and any loss not modeled in the MM solution could result in lower magnitudes for 

the measurement. When looking at the calculated results, particularly the input 

reactance data, the discontinuities in the curves are the result of adding more 

modes to the MM solution. The higher order modes account for the inductive 

shift of the data as the frequency goes higher. 

It is interesting to examine the relationship between the impedance matrix and 

the input impedance. One might expect an input impedance resonance to directly 

correlate with a resonance of a particular mode or modes in the impedance matrix. 

This is the case for three of the five resonances shown in Figures 27 - 31. The other 

83 



two are caused by the mutual coupling between modes. 

For Figure 27, the most strongly excited mode is the 1 0 9 directed mode and it 

is resonant. The most strongly excited and resonant mode for Figure 28 is the 1 0 2 

directbed mode. The resonance shown in Figure 30 has the 3 0 9 directed mode most 

strongly excited and resonant. This is no surprise since it is two octaves above the 

resonance caused by the 1 0 9 directed mode. The resonance shown in Figure 29 

does not correspond to a resonant mode. The most strongly excited mode is the 

1 1 2 directed mode. By analyzing the input, impedance where two modes were 

used for calculating the impedance matrix, it was found that the 1 1 2 directed and 

1 1 9 directed modes were needed to create an input impedance resonance at that 

frequency. Neither of these modes were near resonance. Similarly, for Figure 31, 

there is no resonant mode in the impedance matrix. The most excited mode is the 

3 1 3 directed mode. The modes that are required to show this resonance in the 

MM computation were not determined since a large number of modes were needed 

to generate it for Figures 25, 26, and 31. This resonance was most likely caused by 

the interaction of the 3 1 f directed mode and several other higher order modes. 

4.4 Mutual Impedance Between Vertical Thin Wires in a Grounded 
Dielectric Substrate 

The mutual impedance calculation with respect to their separation for two 

vertical thin wires of equal length inside the dielectric region is compared to previ- 

ously calculated data [21]. The separation and dimensions have all been normalized 

to the free space wavelength at- the operating frequency. The thickness of the sub- 

strate is 0.4152Xo. The dielectric constant of the substrate is 2.45 and the substratme 

is considered lossless. The wires extend from the ground plane at z = -0.4152Xo 

to z = -0.2636Xo and have a radius of 0.001Xo. The separation of the wires is 
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varied from 0.03Xo to 1.95Xo. For the published curve, the excitation was a mag- 

netic frill current around the aperture of the coax. Figures 41 and 42 show that 

the so called delta gap generator yields virtually the same curves for the real and 

imaginary parts of the mutual impedance. The geometry of this calculation is 

shown in Figure 40. 

For the MM computation, the wires were broken into three equal length seg- 

ments. This corresponds to three dipole modes on the wires. The data was com- 

puted at intervals of 0.01Xo separation. The numeric integration had a maximum 

limit on the K axis of 2 0 0 ~ 0  but the actual maximum value of IC occurred when 

the integration converges to within .2%. As the wires moved further apart, the 

maximum value of K for convergence decreases but the density of the integration 

points must increase since the Jo Bessel function in the impedance matrix integrals 

oscillate more rapidly with respect to IC as the separation s increases. The total 

CPU time to compute the data in Figures 41 and 42 was about 9 minutes on a 

VAX 8550. 

The mutual impedance is defined from the two port problem. The excitation 

ports are at the base of each wire at z = -0.4152Xo. The two port linear equation 

is written as 

[ ::: :::I [ ::] = [ :] 
where 211 and 222 are the self impedances of wire 1 and wire 2 respectively, 212 

and 221 are the desired mutual impedance, 11, VI are the current, voltage at port 

1, respectively, and 12, V2 are the current, voltage at port 2, respectively. The t8wo 

port impedance matrix is developed by solving the MM matrix equations first with 

the excitation at port 1 and then with the excitation at port 2. When the MM 

matrix equations are solved with the excitation at port 1, the currents at port. 1 
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Figure 40: Two thin wires imbedded in the dielectric of a grounded dielectric 
substrate. The wires have three dipole MM modes on them. 
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and port 2 can be determined. Dividing these currents by the voltage exciting port 

1, the Y1l and Y21 elements of the two port admittance matrix are determined. 

Similarly, the excitation at port 2 will define the Yl2 and Y22 elements of the 

two port admittance matrix. By inverting this admittance matrix, the two port 

impedance matrix is obtained. 

Figure 43 was constructed to illustrate the effect of the dielectric substrate 

on the mutual impedance. The dielectric substrate was replaced by free space 

for the same geometry and the mutual impedance was coinputcd over a wider 

range of separation. The solid curve is the mutual impedance for the two wires 

imbedded in the grounded dielectric substrate and the dashed curve is the free 

space mutual impedance. The mutual impedance magnitude falls off as roughly 

when the the wires are in free space. This is as expected since the magnitude of the 

niutual impedance is linearly proportional to the electric field and the electric field 

decreases as I in free space. When the dielectric ie present, there is substantially 

more coupling between the two wires as the separation increases. The is due to 

the TM surface waves on the dielectric. 

P 
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Figure 41: A comparison of present calculation to published data [21] for the real 
part of the mutual impedance between two thin wires imbedded in a grounded 

dielectric substrate. 
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Figure 42: A comparison of present calculation to published data [21] for the 
imaginary part of the mutual impedance between two thin wires imbedded in a 

grounded dielectric substrate. 
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Figure 43: A comparison of the magnitude of the mutual impedance of Figure 40 
and the mutual impedance of the same geometry where the dielectric substrate is 

replaced by free space. 
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CHAPTER V 

SUMMARY 

This report has described an integral equation and MM solutions to the prob- 

lems of scattering and radiation from an unloaded and loaded rectangular micro- 

strip patch and the self and mutual impedance of vertical thin wires protruding 

through a grounded dielectric substrate. 

For the rectangular nlicrostrip patch, an integral equation was developed for 

unknown surface currents on the patch. The MM was applied to represent this 

integral equation as a system of linear equations. A crucial part of the solution 

was the integral expressions for the impedance matrix elements. The integrands 

in these expressions were analyzed for even-odd symmetries in order to reduce 

the time of numeric integration. The voltage vector integral expressions for a 

uniform vertical current were also analyzed for even-odd symmetries to reduce the 

time required for their computation. The far field of each mode on the patch was 

expanded asymptotically so that the voltage vector for an incident plane wave 

and the scattered or radiated far field could be expressed analytically. Coaxially 

loading of the patch was modeled by a lumped load in a vertical uniform current 

filament. The current through the load is determined by a two port analysis. 

This report used another technique to improve computational efficiency of the 

MM solution. The impedance matrix and voltage vector elements were analyzed 

with respect to their frequency dependance. It was found that they varied slowly 
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and snioothly with frequency so an interpolation scheme was employed to generate 

impedance matrix and voltage vector data at frequency intervals in between those 

that were calculated [16]. The result was the ability to generate wide band data 

from relatively few impedance matrix computations. Calculated and measured 

data were compared for wide band RCS, wide band input impedance and narrow 

band input impedance of both unloaded and loaded microstrip antennas. The 

RCS curve showed good agreement between calculation and measurement. It also 

showed how the impedance matrix interpolation could discern the narrow band 

peaks in the RCS that were not obvious from the points where the MM calculated 

the impedance matrix. The data presented for the wide band input impedance 

also showed good agreement between calculations and measurement. 

For the vertical thin wire in the grounded dielectric substrate, an integral 

equation was developed for surface currents on the wire. Since a thin wire has a 

diameter much smaller than a wavelength, this surface current was approximated 

by a 2 directed filament of current. The current was obtained by the MM. The 

excitation chosen to determine self and mutual impedance was the so called delta 

gap generator. The mutual impedance between two thin wires imbedded in the 

dielectric is compared to a previous calculation [21] which used a magnetic frill 

current for excitation. The close agreement between the calculated and published 

curves show that the two types of excitation yield virtually identical results. 

92 



LIST OF REFERENCES 

[l] Harrington, R.F., Time-Harmonic Electromagnetic Fields, McGraw-Hill, New 
York, Chapter 4, Section 4-12, 1961. 

[2] Harrington, R.F., Field Computation by Moment Methods, Robert E. Krieger 
Publishing Company, Mdabar, Florida, pp. 5-11, 1968. 

[3] Munson, R.E., “Conformal Microstrip Antennas and Microstrip Phase Ar- 
rays,” IEEE trans., Vol. AP-22, pp. 74-78, Jan. 1974. 

[4] Derneryd, A.G., “Linearly Polarized Microstrip Antennas,” IEEE trans., Vol. 
AP-24, pp. 846-851, November 1976. 

[5] Agrawal, P.K., and Bailey, M.C., “An Analysis Technique for Microstrip An- 
tennas,” IEEE trans., Vol AP-25, pp. 756-759, Nov. 1977. 

[GI Lo, Y.T., Solomon, D., Richards, W.F., “Theory and Experiment on Micro- 
strip Antennas,” IEEE trans., Vol. AP-27, pp. 137-145, Mar. 1979. 

[7] Richards, W.F., Lo, Y.T., Harrison, D.D., “An Improved Theory for Micro- 
strip Antennas and Applications,” IEEE trans., Vol. AP-29, pp. 38-46, Jan 
1981. 

[8] Newman, E.H., and Tulyatlian, P., “Analysis of Microstrip Antennas Using 
Moment Methods,” IEEE trans., Vol. AP-27, pp. 47-53, Jan. 1981. 

[9] Deshpande, M.D. and Bailey, M.C., “Input Impedance of Microstrip AntBen- 
nas,” IEEE trans., Vol. AP-30, pp. 645-650, July 1982. 

[lo] Bailey, M.C. and Deshpande, M.D., “Integral Equation Formulation of Mi- 
crostrip Antennas,” IEEE trans., Vol. AP-30, pp. 651-656, July 1982. 

[ll] Pozar, D.M., “Input Impedance and Mutual Coupling of Rectangular Micro- 
strip Antennas,”IEEE trans., Vol. AP-30, pp. 1191-1196, Nov. 1982. 

[12] Newman, E.H. and Schrote, M.R., “On the Current Distribution for Open 
Surfaces,” IEEE trans., Vol. AP-31, pp.515-518, May 1983. 

93 



[13] Kwan, B.W., “Mutual Coupling Analysis for Conformal Microstrip Anten- 
nas,” Ph.D dissertation, The Ohio State University Dept. of Elec. Eiigr., 
Columbus, Ohio, Dec. 1984. 

[14] Newman, E.H. and Forrai, D.,“Scattering from a Microstrip Patch,” IEEE 
trans., Vol. AP-35, No. 3, pp. 245-251, March 1987. 

[15] Pozar, D.M., “Radiation and Scattering from a Microstrip Patch on a Uniaxial 
Substrate,” IEEE trans., Vol. AP-35, No. 6, pp. 613-621, June 1987. 

[16] Newman, E.H., “Generation of Wideband Data from the Method of Moments 
by Interpolating the Impedance Matrix,” IEEE trans. on Antennas and Prop- 
agation, accepted for publication. 

[17] Richmond, J.H., “Radiation and Scattering by Thin Wires in the Complex 
Frequency Domain,” Technical Report No. 2902-10, The Ohio State University 
ElectroScience Laboratory, Columbus, Ohio, Jul. 1973. 

[18] Collin, R.E., and Zucker, F.J., Antenna Theory Part 2, McGraw-Hill, New 
York, pp. 476-482, 1969. 

[19] Balanis, C.A., Antenna Theory Analysis and Design, Harper and R.ow, New 
York, pp. 316-317,1982. 

[20] Richmond, J.H. and Newman, E.H., “Mutual Impedance Between Vertical 
Dipoles Over a Flat Earth,” Radio Science, Vol. 14, pp. 957-959, November- 
December 1979. 

[21] Chi, C. and Alex6poulos, N.G.,“Radiation by a Probe Through a Substrate,” 
IEEE trans., Vol. AP-34, pp. 1080-1091, September 1986. 

[22] Pinhas, S. and Shtrikman, S., “Vertical Currents in Microstrip Antennas,” 
IEEE trans., Vol. AP-35, pp. 1285-1287, Nov. 1987. 

94 

I 
I 
I 
1 
1 
I 
I 
t 
E 
I 
I 
1 
II 
I 
I 
I 
I 
I 
I 




